Why are Microfluidic Technologies so attractive? What are the real advantages? What are the future opportunities for Microfluidics?

Successes and Challenges of Microfluidics

- Laminar flow and efficient heat and mass transfer at microscale allow well-controlled manipulation of fluid
- Compartmentation of pico-/nano-liter fluid enables analysis on single-cell/molecule level
- Large surface-area-to-volume ratio ensures homogeneous reaction condition

- Decreased sample and reagent consumption
- High throughput
- Shortened reaction time
- Benefits
- Increased sensitivity of analysis
- Mimicking physiologic systems

- Disconnection between technology and applications
- Material limitation for mass production

Challenges

Low programmability hammered by generalizability and reliability

Promising Areas of Applications of Microfluidics

Diagnostics

Rapid and cost-effective testing Antibiotic susceptibility testing Genomic screening

Therapeutics

Organ-on-a-chip Antibody discovery Lipid nanoparticles

Selected providers

Consumer Product Safety

Detection of mislabeled foods Identification of foodborne bacteria Determination of micronutrition

Materials Production

Synthesis of novel nanomaterials Production of active pharmaceutical ingredients Continuous flow synthesis of toxic chemicals

